Playing with Data

A workshop on experimenting with visual form

By Erica Gunn

BU Guest Lecture

3.9.2021

Data visualization is the practice of giving form

to the abstract and unseen.

Part I: Encoding Data

- **1.** What are encodings?
- 2. Creating encodings to represent data

What are encodings?

Visual marks can represent information

大学并在花子大子大子大子大大 XXXX XXXXXXX

Breaking the code

An encoding connects a visual mark with meaning

Marks

大学并生产于大子大子大子大子 XXXX XYXXXXXX

Encoding (cipher)

h	Ÿ	ň	X	X		X	Ť	Ŧ			汽	X
Fi	d S D	200	Y d	× e	F	У g	л h	Ĭ	A	×	1	m
ž	Ч	4		×.	3	Ŷ		4	,		3	
<u>ک</u>	A	4	J.	¥	بي 2	X	Fr	Ļ	Ã	Å	ľ	ŗ.
n Nume	0 Arale	p	q	r	S	t	u	v	w	x	У	z
	aas											
2	X	1	Â	Å	X	à	Å		Å			
0	1	2	3	4	5	6	7	8	9			

Symbolic encoding

Sometimes, the mark represents a concept or idea

Marks

Encoding (symbolic)

A recent example

NASA engineers encoded a hidden message in a parachute

A code in a code

The visual encoding was based on Morse code

Audience matters

A Martian would not be able to decipher this code

Anatomy of a Chart

Common structures help us understand meaning

Types of encodings

There are lots of ways to encode information

Visual Variables

Different visual properties can be used as the basis for an encoding

Jacques Bertin

Kinds of data

Every part of a chart has a job to do

Value (continuous)

Ordinal

Binary/Ternary

Binned

Categories/Hierarchies

apple	orange	banana

What can we do with marks?

Visual encodings support a variety of tasks

Situational attributes

Some attributes don't change the mark

Identity attributes

Some attributes affect how we perceive identity

Circle Star

Combining attributes

We can apply multiple attributes to the same mark

Compound marks

Glyphs are marks made up of other marks

Traditional encodings

Standard charts represent a formal language of encodings

Non-traditional encodings

There is also room to draw outside the lines

Playing with form

Changing different attributes can emphasize different things

Your turn

10 minutes, work with your data. Create as many encodings as you can.

Part II: Purpose and Task

- **1.** What's the visualization for?
- 2. Supporting a user task

Know your purpose.

Audience: Who am I talking to?

Context: What kind of information do they want/expect to see?

Content: Am I communicating a quantitative insight, or a subjective truth?

Things to ask yourself:

- What's your purpose?
- Who is it for?
- What are you trying to show?
- What do people need to see to understand?
- What makes sense for your data?
- Which chart supports the user task?
- How can you use design principles to clarify your representation?

Data visualization as task

- Compare objects side by side
- Group things together
- Understand a sequence of events
- Identify membership
- Explain how things change
- See how individuals are connected

Different Charts for Different Tasks

Charts can support different tasks

Compare objects side by side

Group things together

Narrate a sequence of events

Show membership

Explain how things change

Marks Matter

How you draw the data affects what you see

Focus on area under curve

One chart, many tasks

A user can complete many tasks from a single encoding

Max and min value

Compare to trendline

Look for outliers

Compare series values

Your turn

5 minutes. On a separate sheet of paper:

Identify a purpose for your encodings from part I, and pick the two that you think support that purpose best.

Write down tasks that you think someone can do with these two encodings.

Part III: Optimizing a Visualization

- **1.** Visual principles
- 2. Analyzing your vis

Visual salience

Use visual attributes for emphasis, and to direct attention

Dark

			ullet	

Visual Instability

Bright

Layer order

Different color group

Create relationships

Use Gestalt principles to support meaning

Gestalt principles in action

measies

https://www.fastcompany.com/3054064/feast-your-eyes-on-the-most-beautiful-data-visualizations-of-2015

Gestalt principles in action

https://wwwf.imperial.ac.uk/blog/charityinsights/2015/08/10/cdp-blog-3-chord-diagrams/ https://www.r-graph-gallery.com/313-basic-circle-packing-with-several-levels.html https://www.researchgate.net/figure/Circular-treemapsautomatically-generated-by-our-variational-algorithm-for-the_fig1_283095369

Visual hierarchy

Creating visual hierarchy can support a user task

Adding layers of data

Things to ask yourself:

- Did my visualization serve its purpose?
- Did people understand the encoding?
- Does the visualization really represent the data?
- Does it support a user task?
- Are you using design principles to focus, optimize and clarify your representation?

Your turn

15 minutes.

Get into groups with a partner.

Share your visuals, and see if your partner can:

- a) Understand the encoding
- b) Find what's most important
- c) Guess your purpose for the vis

Explain your encoding, and brainstorm about how you can use visual principles to make it clearer/better/stronger/easier to read and understand.

Iterate

10 minutes.

Pick one vis from your first set (or start a new one!). Think about:

- a) Your purpose
- b) The tasks you want the user to complete
- c) How/where you want to direct attention

Sketch out a new vis focusing on these items.

Share

Talk as a group about the different sketches